

The leading international partner for Explosives and Propellants

IM Melt Cast Compositions Based on NTO

2010 IMEMTS, October 11-14th, 2010, Munich, Germany

Unique Know-How, Multifaceted Range

The leading international partner for Explosives and Propellants

IM Melt Cast Compositions based on NTO

2

Presentation Outline

- Introduction
- •Strategy
- Development Work
 - Ontalites
 - Aluminized Ontalites
- Conclusions

IM Melt Cast Compositions based on NTO Introduction

The hazards exhibited by Ammunition have been illustrated over the decades by Ammunition accidents

Camp DOHA

On July 11th, 1991, a defective heater in M992 ammunition carrier loaded with 155mm artillery shells caught on fire 56 soldiers wounded

102 combat vehicles destroyed (Included 4 M1A1 tanks)20 buildings damaged14 millions\$ of munitions destroyed

there is a need for safer Ammunition, that is why:

The drive towards Insensitive Munitions is an increasing priority especially in the NATO countries

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

EURENCO PROPRIETARY INFORMATION

3

IM Melt Cast Compositions based on NTO Introduction

One of the keys to get Insensitive Munitions is to work on the Explosive and its Formulation

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Introduction

Work on the Explosive or its Formulation

use of less sensitive Nitramines -I-RDX[®] (RS-RDX) or RS-HMX

use of less sensitive Explosives

-TATB (Triamino Trinitro Benzene) -NTO (3-Nitro-1,2,4 Triazol 5-one) -FOX 7 (1,1-Diamino 2,2-Dinitroethylene) -FOX 12 (N-Guanylurea Dinitramide)

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

Work on the Explosive or its Formulation

Cast cured Melt cast Pressed

depending applications and available means.

There is a need to develop IM Melt Cast compositions

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Strategy

7

Solution depending the ammunition and its application

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Strategy

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Strategy

Main Requirements to be taken into account:

IM Melt Cast Compositions based on NTO Development work

11

Solution Cast compositions based on NTO

Two main families:

NTO/TNT/Al/Wax (Aluminized Ontalites)

Replacement product for Tritonal; higher critical diameters than Ontalites

Adapted formulations have been studied in order either to decrease the critical diameter and/or tailor (improve...) the performance

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Ontalites

∜Ontalites

Detonation velocity

13

Performance (as determined by CHEETAH computation)

Series Performance improved by 7 NTO content or partial replacement of NTO by RDX

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Ontalites

14

∜Ontalites

Functional characteristics

Critical diameter

Composition	Critical	
	Diameter (mm)	
NTO/TNT 65/35	20-25	
	(d=1.78)	
NTO/TNT/RDX 60/35/5	15-20	
	(d=1.79)	
NTO/TNT/RDX 55/35/10	15-20	
	(d=1.79)	

Partial replacement of NTO by RDX leads to reduced critical diameter

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Ontalites

15

Solution

Sensitivity characteristics

Characterization as EIDS according to AOP 39

Сар	No detonation
GAP	No go at 70 mm
Susan	Pressure < 27 kPa
Friability	dP/dt < 15 MPa/ms
Bullet impact	No explosion
External fire	No violent reaction
Slow cook off	No fragment throw

Stand Composition B do not pass most or all EIDS requirements

Solutions of the second second

Scompositions with RDX added expected to pass (to be confirmed)

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Aluminized Ontalites

16

Soluminized Ontalites

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Aluminized Ontalites

Solution Aluminized Ontalites

Detonation velocity

Performance (as determined by CHEETAH computation)

Series Performance improved by partial replacement of NTO by RDX

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Aluminized Ontalites

Functional characteristics

Critical diameter

Composition	Critical
	Diameter (mm)
NTO/TNT/Al/Wax 40/30/20/10	51-63
	(d=1.71)
NTO/TNT/RDX/AI/Wax 34/30/6/20/10	45-50
	(d=1.70)
NTO/TNT/RDX/AI/Wax 28/30/12/20/10	40-45
	(d=1.71)

18

Partial replacement of NTO by RDX leads to reduced critical diameter

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Ontalites

19

Solution Aluminized Ontalites

Sensitivity characteristics

Characterization as EIDS according to AOP 39

Сар	No detonation
GAP	No go at 70 mm
Susan	Pressure < 27 kPa
Friability	dP/dt < 15 MPa/ms
Bullet impact	No explosion
External fire	No violent reaction
Slow cook off	No fragment throw

STNT, Composition B and Tritonal do not pass most or all EIDS requirements

Aluminized Ontalite has been proved to fulfill EIDS requirements

Compositions with RDX added expected to pass (to be confirmed)

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010

IM Melt Cast Compositions based on NTO Conclusions

20

Conclusions

Based on available Explosives and processing technologies, standard formulations may be replaced by adapted Insensitive ones.

Melt cast technology with NTO as main explosive offer attractive solutions.

Service Formulations may be tailored to the application, either in performance or in insensitivity. Addition to some extent of Nitramine has been shown to be effective, and allows compromises.

Source were described as the set of the set

IM Melt Cast Compositions based on NTO Conclusions

21

A special thank for their contribution to:

-C. COLLET from SME

-H. PEYRALADE, M. GRANDGEORGES and D. LEGEAY from EURENCO Sorgues -C. SONGY and G. ECK who coauthored this work

Thank you very much for your attention

Questions ?

2010 Insensitive Munitions & Energetic Materials Technology Symposium October 11-14, 2010